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Field quantization in a plasma: Photon mass and charge
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GOLP/Centro de Fı´sica de Plasmas, Instituto Superior Te´cnico, 1096 Lisboa Codex, Portugal

~Received 12 January 2000; revised manuscript received 19 April 2000!

It is shown here that a straightforward procedure can be used to quantize the linearized equations for an
electromagnetic field in a plasma. This leads to a definition of an effective mass for the transverse photons, and
a different one for the longitudinal photons, or plasmons. Both masses are simply proportional to the electron
plasma density. A nonlinear perturbative analysis can also be used to extend the quantization procedure, in
order to include the ponderomotive force effects. This leads to the definition of a photon charge operator. The
mean value of this operator, for a quantum state with a photon occupation number equal to 1, is the equivalent
charge of the photon in a plasma.

PACS number~s!: 52.25.Ub, 12.20.Ds
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The concepts of effective mass and equivalent charge
photon in a plasma were recently introduced in the contex
photon dynamics in nonstationary plasmas. The photon
fective mass is a linear concept, which is intimately rela
to the possibility of accelerating photons by moving plas
perturbations, such as an ionization front or a wakefield p
duced by intense and short laser pulses propagating in a
tral gas@1,2#.

The photon equivalent charge, in contrast, is a nonlin
concept, intimately related with the existence of the ponde
motive force effect@3,4#. It allows for the reaction of radia
tion onto the plasma electrons, and can lead to the possib
of photon Landau damping of electron plasma waves@5#.

One question is often raised as to the ultimate nature
these two concepts. In particular, we may question if they
not just artifacts of a classical statistical description of
electromagnetic radiation in a plasma or if, in contrast, th
can be described by more fundamental equations in the
text of the quantum theory of radiation. This question is a
dressed in the present work, where we deal with the proc
of electromagnetic field quantization in a plasma, and es
lish the quantum definition of the above two concepts.

We consider high-frequency fields and, for that reas
we completely neglect the ion dynamics. Furthermore,
assume an infinite, homogeneous, and isotropic plasma.

We start from Maxwell’s equations, and from nonrelati
istic electron equations of motion. From these basic eq
tions, it is an easy matter to derive the propagation equat
for the scalar and vector potentialsc andAW in the following
form:

¹2c5
e

e0
ñ, S ¹22

1

c2

]2

]t2D AW 52m0JW' . ~1!

Hereñ5(n2n0) is the electron density perturbation wit
respect to the equilibrium valuen0, andJW' is the transverse
part of the electric current, defined by¹•JW'50. We are
using the Coulomb gauge, which means that¹•AW 50.

If we linearize the electron equations of motion, we c
also obtain
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JW'52en0vW' , vW'5
e

m
AW ~2!

and

S ]2

]t2
2Se

2¹2D ñ5
en0

m
¹2c ~3!

with Se
253ve

2 , whereve5AT/m is the electron thermal ve
locity.

Replacing Eqs.~2! and~3! in Eq. ~1!, we obtain the linear
propagation equations for the scalar and vector potential
a plasma:

S ¹22
1

Se
2

]2

]t2D c5
vp

2

Se
2

c ~4!

and

S ¹22
1

c2

]2

]t2D AW 5
vp

2

c2
AW . ~5!

We see that these two equations are formally identic
apart from the important difference between the elect
thermal velocitySe and the velocity of light in vacuumc. If
the equalitySe5c was verified, these two equations wou
be those of a massive vector field. This analogy with a m
sive vector field was already noted by Anderson in 1957@6#,
and inspired the theory of the massive Higgs boson@7#.

Following the usual quantization procedure, we can ea
establish an energy operator, of the form

W5 (
l51

3 E w~k,l!
dkW3

~2p!3
~6!

where the energy density operatorw(k,l) is defined as

w~k,l!5\vk~l!@a†~k,l!a~k,l!11/2#. ~7!

Here a†(k,l) and a(k,l) are the creation and destructio
operators for the three available photon statesl51, 2, and 3,
2989 ©2000 The American Physical Society
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with wave vectorkW , and the corresponding photon freque
cies are determined by the dispersion relation

vk~l!5Ak2cl
21vp

2, ~8!

wherecl5c for l51 and 2, andcl5Se for l53. Obvi-
ously, the first two modes or photon states correspond to
two transverse photons, and the third one to the longitud
photon, or plasmon.

It is also clear, from this dispersion relation, that the el
tromagnetic field in a plasma is a kind of massive vector fi
where an equivalent mass vector can be defined, with c
ponents

ml5
\

cl
2

vp . ~9!

This definition extends the previous concept of the pho
equivalent mass to include that of the longitudinal phot
We see that the effective mass of a plasmon is much la
than that of the transverse photons, because we usually
c2@Se

2 .
Using the Heisenberg equations for the creation and

struction operators, and the well known commutation re
tions between these operators, we can easily obtain

d

dt
a†~k,l!5 ivk~l!a†~k,l! ~10!

and a similar equation fora(k,l). These equations simpl
state that the field modes are quantum oscillators with
quenciesvk(l) determined by Eq.~8!. In this sense, they ar
the exact quantum counterparts of the linearlized class
field equations~4! and ~5!.

Let us now turn to the nonlinear analysis. The ponde
motive force exerced by the transverse field on the plas
electrons can be included in the electron equations of
tion. By using a nonlinear perturbative approach, we c
write the total electron plasma density as the sum of th
terms,

n5n01ñ1n2 , ~11!

where ñ is the linear perturbation associated with the ex
tence of electron plasma waves, andn2 is the nonlinear con-
tribution to the density perturbation due to the ponderom
tive force. This last term is determined by the equation

]2

]t2
n21vp

2n25
e2n0

2m2
¹2uAu2. ~12!

Here it should be noted that, for transverse wave pac
moving without significant deformation accross the plas
with group velocityvg , we can write

¹uAu2.
1

vg

]

]t
uAu2. ~13!

It is well known that this nonlinear density perturbation
composed of two parts@3#. One is directly due to the gradi
ent of the electromagnetic energy density which expels
-
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electrons away from the region occupied by the transve
wave packets. The other is due to the electron density os
lations which are excited by the restoring electrostatic fiel
and can stay much longer after the wave packet has g
These electrostatic oscillations follow the transverse w
packets along the plasma as a kind of wake, and are usu
called the wakefield.

In a first step, we can neglect the wakefield perturbat
by dropping the second term on the left hand side of E
~12!. This corresponds to concentrating on effects occurr
on a time scale much faster than the period of the elec
plasma oscillations: (]2/]t2)@vp

2 . Taking the approximate
equation~13! into account, we can then obtain

n2.
e0

2m
kp

2uAu2, ~14!

where we have usedkp
25(vp /vg)2. The same result could

also be derived by using a more exact calculation@3#.
The total charge density associated with this nonlin

density perturbation will then be

Q52en252
ee0

2m
kp

2uAu2. ~15!

In more exact terms, this can be written as

Q5E Qk

dkW

~2p!3
, ~16!

where

Qk52
ee0

2mvk

vp
2

vk
2
AW k* •AW k ~17!

andvk5(]vk /]k) is the group velocity associated with th
wave vectorkW .

However, the field quantization given by Eqs.~6! and~7!

shows that we can replace the classical quantitiesAW k andAW k*
by the operators

AW k→ (
l51,2

A \

2e0vk
ak~l!eW k~l! ~18!

and

AW k* → (
l51,2

A \

2e0vk
ak

†~l!eW k* ~l!, ~19!

whereeW k(l) is the unit polarization vector. This means tha
in the process of extending our quantization procedure to
nonlinear fields, the classical quantityuAku2 appearing in Eq.
~17! will be replaced by the following operator:

uAku2→ (
l51,2

\

2e0vk
ak

†ak . ~20!

This means that we can define the photon charge oper
as
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Qk~l!52
e\

4mvk

vp
2

vk
2

ak
†~l!ak~l!. ~21!

Calculating the mean value of this operator for some qu
tum stateuf&, we can determine the mean value of the to
photon chargêQ&5^fuQuf& as

Q5 (
l51,2

E ^Qk~l!&
dkW

~2p!3

52 (
l51,2

E e\

4mvk

vp
2

vk
2 ^ak

†~l!ak~l!&
dkW

~2p!3
. ~22!

This can also be written in a more appropriate form as

Q5 (
l51,2

E qknk~l!
dkW

~2p!3
. ~23!

In this expression, the quantitynk(l)5^ak
†(l)ak(l)& is

the photon occupation number, or the mean value of
usual number operator, and the quantityqk is the photon
charge, or the equivalent electric charge of a single phot

qk52
e\

4mvk

vp
2

vk
2

. ~24!

This quantity differs by a numerical factor of 2 from th
quantity given in our previous work on the classical theo
which is due to a distinct~and eventually more appropriate!
definition of the photon occupation number.

As an numerical example, let us consider the case o
optical photon moving in a dense plasma. For an elect
plasma density ofn051020 cm23, the photon effective mas
is ml51,2.7310273m, wherem is the electron mass, an
it is independent of the photon frequency, as shown by
~9!. For a laser compressed plasma where the electron
sity can be as high as 1026 cm23, the photon effective mas
will be 103 times larger.

Assuming that the photon frequency is ten times lar
than the electron plasma frequency,vk.10vp , the equiva-
lent charge will beqk.22310283e. This is much smaller
~in absolute value! than the electron charge2e, but will
become non-negligible for intense laser pulses containin
large number of photons inside a small volume. Furtherm
.

-
l

e

:

,

n
n

q.
n-

r

a
e,

if vk approaches the cutoff frequencyvp , the group velocity
vk will become much smaller thanc and, according to defi-
nition ~24!, the value of the equivalent chargeqk will be-
come much larger.

Finally, we should note that the wakefield perturbati
associated with an electromagnetic wave packet could
be easily quantized, because it consists of electron pla
waves with a phase velocity nearly equal to the group vel
ity of the wave packet. This means that, in quantum term
we can say that a group of transverse photons moving
plasma is always followed by a wake of longitudinal ph
tons, or plasmons. However, in this simple and sugges
quantum picture of the wakefield, we should not forget th
individual plasmons have very low~group! velocities.

In conclusion, we have shown here that a straightforw
quantization procedure can be used for a linearized elec
magnetic field in a plasma, and that it naturally leads to
concept of the photon effective mass. This mass is differ
for transverse photons and for longitudinal photons~or plas-
mons!, but it is always proportional to the electron plasm
frequency. It was also shown that the field quantization i
plasma is very similar, but not identical, to the quantizati
of a massive vector field.

Using a nonlinear perturbative analysis we were able
extend this quantization procedure, in order to define a p
ton charge operator, and to establish the value of the pho
equivalent charge. The single photon charge appears, in
quantum description of the photon field in a plasma, as
constant of proportionality between this charge operator
the well known photon number operator. The existence
such a charge is a result of the ponderomotive force~or ra-
diation pressure! which pushes plasma electrons away fro
regions occupied by transverse photons.

The present analysis remains valid as long as the pla
medium can be described by a fluid model. This means
it will eventually break down for very high-energy photon
with a wavelength much smaller than the mean particle d
tance inside the plasma. However, even in that case, we
still find a nonzero photon charge and mass, as long as
interaction of the photon with the particles of the medium
formulated in terms of mean field concepts. This can
done, for instance, by relating the individual collisions of t
high-energy photons with the individual plasma electrons
the plasma dielectric constant by using the optical theor
This question will be addressed in a future work.
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