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Field quantization in a plasma: Photon mass and charge
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It is shown here that a straightforward procedure can be used to quantize the linearized equations for an
electromagnetic field in a plasma. This leads to a definition of an effective mass for the transverse photons, and
a different one for the longitudinal photons, or plasmons. Both masses are simply proportional to the electron
plasma density. A nonlinear perturbative analysis can also be used to extend the quantization procedure, in
order to include the ponderomotive force effects. This leads to the definition of a photon charge operator. The
mean value of this operator, for a quantum state with a photon occupation number equal to 1, is the equivalent
charge of the photon in a plasma.

PACS numbsd(s): 52.25.Ub, 12.20.Ds

The concepts of effective mass and equivalent charge of a
photon in a plasma were recently introduced in the context of Ji=—enp,, v,=—A 2
photon dynamics in nonstationary plasmas. The photon ef-
fective mass is a linear concept, which is intimately related,,q
to the possibility of accelerating photons by moving plasma

perturbations, such as an ionization front or a wakefield pro- 2 en
duced by intense and short laser pulses propagating in a neu- ( 5 —82V2 =—V?y 3)
tral gas[1,2]. at m

The photon equivalent charge, in contrast, is a nonlinear
concept, intimately related with the existence of the ponderowith S;=3vZ, wherev = T/m is the electron thermal ve-
motive force effec{3,4]. It allows for the reaction of radia- locity.
tion onto the plasma electrons, and can lead to the possibility Replacing Egs(2) and(3) in Eq. (1), we obtain the linear
of photon Landau damping of electron plasma wa\Bs propagation equations for the scalar and vector potentials in

One question is often raised as to the ultimate nature of plasma:
these two concepts. In particular, we may question if they are
not just artifacts of a classical statistical description of the ( , 1 az) wg

electromagnetic radiation in a plasma or if, in contrast, they B ? E =2V 4)
can be described by more fundamental equations in the con- ©
text of the quantum theory of radiation. This question is ad-

dressed in the present work, where we deal with the process

of electromagnetic field quantization in a plasma, and estab- ®
lish the quantum definition of the above two concepts. ( 2_ — __|A=—"PA. (5)
We consider high-frequency fields and, for that reason, c? gt? c?

we completely neglect the ion dynamics. Furthermore, we

assume an infinite, homogeneous, and isotropic plasma. We see that these two equations are formally identical,
We start from Maxwell's equations, and from nonrelativ- apart from the important difference between the electron

istic electron equations of motion. From these basic equathermal velocityS, and the velocity of light in vacuura. If

tions, it is an easy matter to derive the propagation equation§e equalityS;=c was verified, these two equations would

for the scalar and vector potentiabsandﬂ in the following be those of a massive vector field. This analogy with a mas-
form: sive vector field was already noted by Anderson in 15&7

and inspired the theory of the massive Higgs bosdn
Following the usual quantization procedure, we can easily

e 1 2\ . R establish an energy operator, of the form
VZ{/I: 6—I"I, Vz——z—z AI—,LLOJL. (1)
0 c ot K3
W= w(k,\ 6
2| wik) PE 6)

Heren=(n— ng) is the electron density perturbation with
respect to the equilibrium valus, andjL is the transverse
part of the electric current, defined By-J, =9. We are w(k,\) =%w(M[af(k,Nack,\)+1/2]. (7)
using the Coulomb gauge, which means tiaA=0.

If we linearize the electron equations of motion, we canHere a'(k,\) anda(k,\) are the creation and destruction
also obtain operators for the three available photon statesl, 2, and 3,

where the energy density operatetk,\) is defined as
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with wave vectork, and the corresponding photon frequen-€lectrons away from the region occupied by the transverse

cies are determined by the dispersion relation wave packets. The other is due to the electron density oscil-
lations which are excited by the restoring electrostatic fields,
o (N)=Vk2ci+ wg, (8)  and can stay much longer after the wave packet has gone.

These electrostatic oscillations follow the transverse wave
wherec,=c for A=1 and 2, andc, =S, for A\=3. Obvi-  packets along the plasma as a kind of wake, and are usually
ously, the first two modes or photon states correspond to thealled the wakefield.
two transverse photons, and the third one to the longitudinal In a first step, we can neglect the wakefield perturbation
photon, or plasmon. by dropping the second term on the left hand side of Eq.

It is also clear, from this dispersion relation, that the elec12). This corresponds to concentrating on effects occurring
tromagnetic field in a plasma is a kind of massive vector fieldon a time scale much faster than the period of the electron
where an equivalent mass vector can be defined, with conplasma OSCi||ati0nSZé(2/5t2)>w[23- Taking the approximate
ponents equation(13) into account, we can then obtain

€,

M ="3@p- 9 nzz%kng, (14)

This definition extends the previous concept of the photorwhere we have usekl;=(w,/vg)?. The same result could
equivalent mass to include that of the longitudinal photonalso be derived by using a more exact calculafi®h
We see that the effective mass of a plasmon is much larger The total charge density associated with this nonlinear
than that of the transverse photons, because we usually hadensity perturbation will then be
c®>S2.

Using the Heisenberg equations for the creation and de- _ __ %% k2|A|2 (15)
struction operators, and the well known commutation rela- '

tions between these operators, we can easily obtain ) )
In more exact terms, this can be written as

%a*(k,x)ziwk(x)af(k,x) (10) dk
Q= f Qx pync (16)
and a similar equation foa(k,\). These equations simply (2)
state that the field modes are quantum oscillators with fregnere
guencieswy(\) determined by Eq8). In this sense, they are
the exact quantum counterparts of the linearlized classical cen w2
field equationg4) and (5). Qu=— = —2A* . A, (17)
Let us now turn to the nonlinear analysis. The pondero- 2May vﬁ

motive force exerced by the transverse field on the plasma

electrons can be included in the electron equations of moandv,=(Jdw/dK) is the group velocity associated with the
tion. By using a nonlinear perturbative approach, we carwave vectork.

write the total electron plasma density as the sum of three However, the field quantization given by E¢8) and(7)

terms, shows that we can replace the classical quantfigand A}
~ by the operators

n=ng+n+n,, (11
wheren is the linear perturbation associated with the exis- ,&k—> Z Lak()\)ék()\) (18
tence of electron plasma waves, angis the nonlinear con- \Fi2 ¥ 2600k
tribution to the density perturbation due to the ponderomo-

tive force. This last term is determined by the equation and
h
> &*no A al(\)éx (A 19
g A AR (12 (= 2, Vaea Ve, (19

Here it should be noted that, for transverse wave packet4nereex()) is the unit polarization vector. This means that,
moving without significant deformation accross the plasmdn the process of extending our quantization procedure to the

with group velocityv,,, we can write nonlinear fields, the classical quantj#|® appearing in Eq.
g (17) will be replaced by the following operator:

19
V|A[P=— —|A]. (13
Vg at aﬁak. (20)
It is well known that this nonlinear density perturbation is

composed of two parts3]. One is directly due to the gradi- This means that we can define the photon charge operator
ent of the electromagnetic energy density which expels thas
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oh w2 if wy approaches the cutoff frequeney,, the group velocity
Qr(N)=— Ima- —Saﬁ()\)ak()\). (21 vy Will become much smaller thamand, according to defi-
“k v nition (24), the value of the equivalent chargg will be-

come much larger.
Calculating the mean value of this operator for some quan- 9

tum state ), we can determine the mean value of the total, T 8 L et could aiso
photon chargé€Q)=(#|Q|¢) as ’ ’

be easily quantized, because it consists of electron plasma
waves with a phase velocity nearly equal to the group veloc-
ity of the wave packet. This means that, in quantum terms,

Q= E f<Qk<

(2 )3 we can say that a group of transverse photons moving in a

w2 dIZ plasma is always followed by a wake of longitudinal pho-
=— 2 _"< E(A)ak()\» (22) tons, or plasmons. However, in this simple and suggestive
\S12 ) Amoy vﬁ quantum picture of the wakefield, we should not forget that

individual plasmons have very lo¢group velocities.

This can also be written in a more appropriate form as In conclusion, we have shown here that a straightforward

di gquantization procedure can be used for a linearized electro-
Q= E f aqne(\) —— . (23) magnetic field in a plasma, and that it naturally leads to the
A=1 2m)3 concept of the photon effective mass. This mass is different

for transverse photons and for longitudinal photémsplas-
mong, but it is always proportional to the electron plasma
frequency. It was also shown that the field quantization in a
plasma is very similar, but not identical, to the quantization
of a massive vector field.
o2 Using a nonlinear perturbative analysis we were able to
®p (24) extend this quantization procedure, in order to define a pho-
ﬁ ton charge operator, and to establish the value of the photon
equivalent charge. The single photon charge appears, in our
This quantity differs by a numerical factor of 2 from the quantum description of the photon field in a plasma, as the
quantity given in our previous work on the classical theory,constant of proportionality between this charge operator and
which is due to a distincfand eventually more appropriate the well known photon number operator. The existence of
definition of the photon occupation number. such a charge is a result of the ponderomotive fdoera-
As an numerical example, let us consider the case of adiation pressutewhich pushes plasma electrons away from
optical photon moving in a dense plasma. For an electromegions occupied by transverse photons.
plasma density ofi,=10?° cm™3, the photon effective mass The present analysis remains valid as long as the plasma
IS My _g,~=7X 10~ "xm, wherem is the electron mass, and medium can be described by a fluid model. This means that
it is independent of the photon frequency, as shown by Eqjt will eventually break down for very high-energy photons,
(9). For a laser compressed plasma where the electron dewith a wavelength much smaller than the mean patrticle dis-
sity can be as high as %cm 3, the photon effective mass tance inside the plasma. However, even in that case, we can
will be 10° times larger. still find a nonzero photon charge and mass, as long as the
Assuming that the photon frequency is ten times largeiinteraction of the photon with the particles of the medium is
than the electron plasma frequeney,~10w,, the equiva- formulated in terms of mean field concepts. This can be
lent charge will bey,=—2x10 8xe. This |s much smaller done, for instance, by relating the individual collisions of the
(in absolute valugthan the electron charge e, but will high-energy photons with the individual plasma electrons to
become non-negligible for intense laser pulses containing the plasma dielectric constant by using the optical theorem.
large number of photons inside a small volume. FurthermoreThis question will be addressed in a future work.

In this expression, the quantity(\)=(aj(\)ax(\)) is
the photon occupation number, or the mean value of th
usual number operator, and the quanty is the photon
charge, or the equivalent electric charge of a single photon,
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4mwk
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